Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Invest Ophthalmol Vis Sci ; 64(14): 10, 2023 11 01.
Article En | MEDLINE | ID: mdl-37934161

Purpose: Patients deficient in peroxisomal ß-oxidation, which is essential for the synthesis of docosahexaenoic acid (DHA, C22:6n-3) and breakdown of very-long-chain polyunsaturated fatty acids (VLC-PUFAs), both important components of photoreceptor outer segments, develop retinopathy present with retinopathy. The representative mouse model lacking the central enzyme of this pathway, multifunctional protein 2 (Mfp2-/-), also show early-onset retinal decay and cell-autonomous retinal pigment epithelium (RPE) degeneration, accompanied by reduced plasma and retinal DHA levels. In this study, we investigated whether DHA supplementation can rescue the retinal degeneration of Mfp2-/- mice. Methods: Mfp2+/- breeding pairs and their offspring were fed a 0.12% DHA or control diet during gestation and lactation and until sacrifice. Offspring were analyzed for retinal function via electroretinograms and for lipid composition of neural retina and plasma with lipidome analysis and gas chromatography, respectively, and histologically using retinal sections and RPE flatmounts at the ages of 4, 8, and 16 weeks. Results: DHA supplementation to Mfp2-/- mice restored retinal DHA levels and prevented photoreceptor shortening, death, and impaired functioning until 8 weeks. In addition, rescue of retinal DHA levels temporarily improved the ability of the RPE to phagocytose outer segments and delayed the RPE dedifferentiation. However, despite the initial rescue of retinal integrity, DHA supplementation could not prevent retinal degeneration at 16 weeks. Conclusions: We reveal that the shortage of a systemic supply of DHA is pivotal for the early retinal degeneration in Mfp2-/- mice. Furthermore, we report that adequate retinal DHA levels are essential not only for photoreceptors but also for RPE homeostasis.


Retinal Degeneration , Retinal Pigment Epithelium , Humans , Female , Animals , Mice , Docosahexaenoic Acids , Retina , Causality
2.
Proc Natl Acad Sci U S A ; 120(43): e2301733120, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37862382

Retinal pigment epithelium (RPE) cells have to phagocytose shed photoreceptor outer segments (POS) on a daily basis over the lifetime of an organism, but the mechanisms involved in the digestion and recycling of POS lipids are poorly understood. Although it was frequently assumed that peroxisomes may play an essential role, this was never investigated. Here, we show that global as well as RPE-selective loss of peroxisomal ß-oxidation in multifunctional protein 2 (MFP2) knockout mice impairs the digestive function of lysosomes in the RPE at a very early age, followed by RPE degeneration. This was accompanied by prolonged mammalian target of rapamycin activation, lipid deregulation, and mitochondrial structural anomalies without, however, causing oxidative stress or energy shortage. The RPE degeneration caused secondary photoreceptor death. Notably, the deterioration of the RPE did not occur in an Mfp2/rd1 mutant mouse line, characterized by absent POS shedding. Our findings prove that peroxisomal ß-oxidation in the RPE is essential for handling the polyunsaturated fatty acids present in ingested POS and shed light on retinopathy in patients with peroxisomal disorders. Our data also have implications for gene therapy development as they highlight the importance of targeting the RPE in addition to the photoreceptor cells.


Lysosomes , Retinal Pigment Epithelium , Mice , Humans , Animals , Retinal Pigment Epithelium/metabolism , Lysosomes/metabolism , Phagocytosis/genetics , Oxidative Stress , Mice, Knockout , Mammals
3.
Pharmacol Ther ; 247: 108440, 2023 Jul.
Article En | MEDLINE | ID: mdl-37201739

The fatty acid composition of photoreceptor outer segment (POS) phospholipids diverges from other membranes, being highly enriched in polyunsaturated fatty acids (PUFAs). The most abundant PUFA is docosahexaenoic acid (DHA, C22:6n-3), an omega-3 PUFA that amounts to over 50% of the POS phospholipid fatty acid side chains. Interestingly, DHA is the precursor of other bioactive lipids such as elongated PUFAs and oxygenated derivatives. In this review, we present the current view on metabolism, trafficking and function of DHA and very long chain polyunsaturated fatty acids (VLC-PUFAs) in the retina. New insights on pathological features generated from PUFA deficient mouse models with enzyme or transporter defects and corresponding patients are discussed. Not only the neural retina, but also abnormalities in the retinal pigment epithelium are considered. Furthermore, the potential involvement of PUFAs in more common retinal degeneration diseases such as diabetic retinopathy, retinitis pigmentosa and age-related macular degeneration are evaluated. Supplementation treatment strategies and their outcome are summarized.


Docosahexaenoic Acids , Fatty Acids, Omega-3 , Mice , Animals , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Docosahexaenoic Acids/analysis , Retina/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism
4.
Methods Mol Biol ; 2643: 469-500, 2023.
Article En | MEDLINE | ID: mdl-36952207

During the last three decades many mouse lines were created or identified that are deficient in one or more peroxisomal functions. Different methodologies were applied to obtain global, hypomorph, cell type selective, inducible, and knockin mice. Whereas some models closely mimic pathologies in patients, others strongly deviate or no human counterpart has been reported. Often, mice, apparently endowed with a stronger transcriptional adaptation, have to be challenged with dietary additions or restrictions in order to trigger phenotypic changes. Depending on the inactivated peroxisomal protein, several approaches can be taken to validate the loss-of-function. Here, an overview is given of the available mouse models and their most important characteristics.


Fatty Acids , Peroxisomal Disorders , Animals , Mice , Fatty Acids/metabolism , Peroxisomes/metabolism , Peroxisomal Disorders/genetics , Peroxisomal Disorders/metabolism , Peroxisomal Disorders/pathology
5.
Exp Eye Res ; 228: 109406, 2023 03.
Article En | MEDLINE | ID: mdl-36740160

Utilizing cell type-specific knockout mice has been an excellent tool for decades not only to explore the role of a gene in a specific cell, but also to unravel the underlying mechanism in diseases. To investigate the mechanistic association between dysfunction of the peroxisomal protein multifunctional protein 2 (MFP2) and retinopathy, we generated and phenotyped multiple transgenic mouse models with global or cell type-specific MFP2 deletion. These studies pointed to a potential role of MFP2 specifically in rod bipolar cells. To explore this, we aimed to create rod bipolar cell specific knockout mice of Mfp2 by crossing Mfp2L/L mice with L7Cre-2 mice (also known as PCP2Cre), generating L7-Mfp2-/- mice. L7Cre-2 mice express Cre recombinase under the control of the L7 promoter, which is believed to be exclusively expressed in rod bipolar cells and cerebellar Purkinje cells. Unexpectedly, only sporadic Cre activity was observed in the rod bipolar cells of L7-Mfp2-/- mice, despite efficient Cre recombination in cerebellar Purkinje cells. Moreover, a variable fraction of photoreceptors was targeted, which does not correspond with the supposed specificity of L7Cre-2 mice. These observations indicate that L7Cre-2 mice can be exploited to manipulate Purkinje cells in the cerebellum, whereas they cannot be used to generate rod bipolar cell specific knockout mice. For this aim, we suggest utilizing an independently generated mouse line named BAC-L7-IRES-Cre.


Purkinje Cells , Retinal Bipolar Cells , Mice , Animals , Mice, Transgenic , Mice, Knockout
6.
Brain Res Bull ; 193: 158-165, 2023 Feb.
Article En | MEDLINE | ID: mdl-36584717

On the basis of findings that cultured rat hepatocytes secrete lipoprotein with a high plasmalogen content and the occurrence of this lipid in human serum, it has been suggested that hepatocytes play a role in the supply of plasmalogens to tissues. We tested this hypothesis in a mouse with a hepatocyte-specific defect in peroxisomes, an organelle essentially required for plasmalogen biosynthesis. We analyzed plasmalogens in lipid extracts of forebrain, liver and five further tissues and in plasma by reaction with dansylhydrazine in hydrochloric acid, which cleaves the vinyl ether of plasmalogens and forms a fluorescent dansylhydrazone, which we quantified by reversed phase high performance liquid chromatography. Reaction with dansylhydrazine in acetic acid was used to quantify free aldehydes as a control. Our results show normal levels of plasmalogens in plasma and in all tissues examined, including forebrain and the liver, irrespective of the inactivation of hepatic peroxisomes. None of the selected ether lipids analyzed by mass spectrometry in plasma and liver was decreased in the mice deficient in liver peroxisomes. In contrast, we found three plasmenylcholine species which were even significantly increased in the livers of these animals. Quantification of mRNA expression of plasmalogen biosynthetic enzymes revealed particularly low expression of fatty acyl-CoA reductase, the key regulatory enzyme of plasmalogen biosynthesis, in liver, with and without hepatic peroxisome deficiency. Our results do not support the suggested role of hepatocytes in supplying plasmalogens to tissues.


Hepatocytes , Plasmalogens , Animals , Mice , Dansyl Compounds , Hepatocytes/metabolism , Peroxisome-Targeting Signal 1 Receptor , Plasmalogens/chemistry , Plasmalogens/metabolism
7.
Cells ; 11(1)2022 01 04.
Article En | MEDLINE | ID: mdl-35011723

Retinal degeneration is a common feature in peroxisomal disorders leading to blindness. Peroxisomes are present in the different cell types of the retina; however, their precise contribution to retinal integrity is still unclear. We previously showed that mice lacking the central peroxisomal ß-oxidation enzyme, multifunctional protein 2 (MFP2), develop an early onset retinal decay including photoreceptor cell death. To decipher the function of peroxisomal ß-oxidation in photoreceptors, we generated cell type selective Mfp2 knockout mice, using the Crx promotor targeting photoreceptors and bipolar cells. Surprisingly, Crx-Mfp2-/- mice maintained photoreceptor length and number until the age of 1 year. A negative electroretinogram was indicative of preserved photoreceptor phototransduction, but impaired downstream bipolar cell signaling from the age of 6 months. The photoreceptor ribbon synapse was affected, containing free-floating ribbons and vesicles with altered size and density. The bipolar cell interneurons sprouted into the ONL and died. Whereas docosahexaenoic acid levels were normal in the neural retina, levels of lipids containing very long chain polyunsaturated fatty acids were highly increased. Crx-Pex5-/- mice, in which all peroxisomal functions are inactivated in photoreceptors and bipolar cells, developed the same phenotype as Crx-Mfp2-/- mice. In conclusion, the early photoreceptor death in global Mfp2-/- mice is not driven cell autonomously. However, peroxisomal ß-oxidation is essential for the integrity of photoreceptor ribbon synapses and of bipolar cells.


Peroxisomes/metabolism , Photoreceptor Cells/metabolism , Retinal Bipolar Cells/metabolism , Animals , Humans , Mice , Mice, Knockout
8.
Int J Mol Sci ; 22(8)2021 Apr 15.
Article En | MEDLINE | ID: mdl-33921065

Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or ß-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors.


Peroxisomes/metabolism , Retina/pathology , Animals , Disease Models, Animal , Metabolome , Phospholipids/deficiency , Retina/metabolism , Retinal Diseases/metabolism , Retinal Diseases/pathology
9.
Front Cell Dev Biol ; 9: 632930, 2021.
Article En | MEDLINE | ID: mdl-33604342

Patients lacking multifunctional protein 2 (MFP2), the central enzyme of the peroxisomal ß-oxidation pathway, develop retinopathy. This pathway is involved in the metabolism of very long chain (VLCFAs) and polyunsaturated (PUFAs) fatty acids, which are enriched in the photoreceptor outer segments (POS). The molecular mechanisms underlying the retinopathy remain, however, elusive. Here, we report that mice with MFP2 inactivation display decreased retinal function already at the age of 3 weeks, which is accompanied by a profound shortening of the photoreceptor outer and inner segments, but with preserved photoreceptor ultrastructure. Furthermore, MFP2 deficient retinas exhibit severe changes in gene expression with downregulation of genes involved in the phototransduction pathway and upregulation of inflammation related genes. Lipid profiling of the mutant retinas revealed a profound reduction of DHA-containing phospholipids. This was likely due to a hampered systemic supply and retinal traffic of this PUFA, although we cannot exclude that the local defect of peroxisomal ß-oxidation contributes to this DHA decrease. Moreover, very long chain PUFAs were also reduced, with the exception of those containing ≥ 34 carbons that accumulated. The latter suggests that there is an uncontrollable elongation of retinal PUFAs. In conclusion, our data reveal that intact peroxisomal ß-oxidation is indispensable for retinal integrity, most likely by maintaining PUFA homeostasis.

...